Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations
نویسندگان
چکیده
[1] Current estimates of global dust emission vary by over a factor of two. Here, we use multiple data types and a worldwide array of stations combined with a dust model to constrain the magnitude of the global dust cycle for particles with radii between 0.1 and 8 mm. An optimal value of global emission is calculated by minimizing the difference between the model dust distribution and observations. The optimal global emission is most sensitive to the prescription of the dust source region. Depending upon the assumed source, the agreement with observations is greatest for global, annual emission ranging from 1500 to 2600 Tg. However, global annual emission between 1000 and 3000 Tg remains in agreement with the observations, given small changes in the method of optimization. Both ranges include values that are substantially larger than calculated by current dust models. In contrast, the optimal fraction of clay particles (whose radii are less than 1 mm) is lower than current model estimates. The optimal solution identified by a combination of data sets is different from that identified by any single data set and is more robust. Uncertainty is introduced into the optimal emission by model biases and the uncertain contribution of other aerosol species to the observations.
منابع مشابه
Constraining the Global Dust Emission and Load by Minimizing the Difference Between the Model and Observations
Current model estimates of global dust emission vary by over a factor of two. Here, we use multiple data types and a worldwide array of stations combined with a dust model to constrain the magnitude of the global dust cycle. An optimal global value of dust emission and the aerosol load are calculated by minimizing the difference between the model and the observations. Depending upon the prescri...
متن کاملAn Assessment of Wind Erosion Schemes in Dust Emission Simulations over the Middle East
Extended abstract 1- INTRODUCTION Atmospheric aerosols, solid and liquid particles in the atmosphere, play a crucial role in the atmospheric radiation equilibrium. These particles have an influence on the scattering and absorption of short wavelength radiation, and on the other hand, affect radiation absorption and emission in long wavelengths. Dust particles are among the importan...
متن کاملSeismic study and spatial observations of a & b – values for the different earthquake hazard zones of India
This paper study the recent seismicity in Earthquake hazard zones in India. A large historical earthquake event catalog to cover the period of 1900-2018, the parameters date, time, latitude, longitude, depth and magnitude has been used to calculating frequency-magnitude distribution (b-value) of seismic hazard zones in India. To convert different magnitude scales into a single moment magnitude ...
متن کاملAnalysis and Comparing Satellite Products and Simulated of AOD in West Iran (2000-2018)
Dust is influenced by the interaction of the atmosphere-Earth system and, by changing radiation energy, atmospheric chemistry and physics, affects the climate of an area. Due to the necessity of the role of dust and its spatial-dynamic distribution in the atmosphere of a region, as well as the existence of advanced remote sensing techniques and modeling in the field of dust simulation, the pres...
متن کاملDust Storm Frequency in Connection with Climatic Change in the Arid Region of Iran
Dust storms in arid and semi-arid regions have harmful impacts on the environment, the economy, and the health of local and global communities. In this study, the frequency of annual dust events in twenty-five stations and five climatic variables including rainfall, maximum annual wind speed, average annual wind speed, maximum annual temperature, and average annual temperature in arid regions o...
متن کامل